EDITORIAL
The International Mesothelioma Interest Group was formed in September of 1991 by a group of interested medical practitioners and scientists from different countries whose aim was to improve communications and collaborations amongst workers interested in mesothelioma and asbestos-induced mesothelial changes. Our primary aim was to hold an International Mesothelioma Conference on alternate years, and to share resources.

The second annual mesothelioma meeting was held in May of 1993 as a satellite to the American Thoracic Society Meeting in San Francisco. A summary of the proceedings of this meeting is included. The next meeting will be held in Europe in 1995, possible as a satellite to the European Respiratory Society Meeting in Barcelona (September 24-28), although this has yet to be confirmed.

Included also in this newsletter is a summary of human malignant mesothelioma cell lines which have been described in the literature.

Bruce Robinson
President, International Mesothelioma Interest Group

REPORT OF 2ND INTERNATIONAL MESOTHELIOMA INTEREST GROUP WORKSHOP
SAN FRANCISCO, USA, MAY 1993

Mesothelioma Biology
The current status of oncogenes, tumour suppressor genes and growth factor abnormalities in mesothelioma was discussed. Van Marck (Belgium) assessed N-ras, fos and myc oncoproteins immunohistochemically in mesothelioma and non-neoplastic mesothelium and demonstrated that these proteins were expressed in both tissues. Rb protein, possibly in a mutated form, was found in all mesothelioma cases (nuclear in 75%) and approximately 25% of mesothelioma cases were immuno-reactive for P53 protein (nuclear staining) in contrast to non-neoplastic mesothelium (normal or hyperplastic) which was negative.

Versnel (The Netherlands) studied the presence of PDGF protein immunocytochemically (using a MoAb recognizing AA, AB and BB) in mesothelioma effusions and demonstrated PDGF in macrophages and mesothelioma cells. Double immunofluorescence staining (using EMA) confirmed that mesothelioma cells expressed PDGF. PDGF production by mesothelioma cells
was also demonstrated in tissue sections of each of the three different histological types of mesothelioma, confirming the in-vivo production of PDGF by this tumour. Reactive mesothelium was not totally negative but showed weaker staining.

Robinson (Australia) reviewed the status of his group’s work in this area. They demonstrated mRNA for PDGF A and B chains in most mesothelioma cell lines from both humans and mice but anti-sense oligonucleotide inhibition studies demonstrated marked growth inhibition with PDGF A-chain anti-sense oligonucleotides in contrast to those directed at the B-chain. Similarly, anti-sense oligonucleotides against the A-chain receptor were also inhibitory in contrast to those against the B-chain receptor. Similar results were observed using anti-sense oligonucleotides against TGF-β and the data suggests co-operation between TGF-β and the PDGF system. P53 lesions were found in approximately one third of cell lines, consistent with previous data. Transfection of a mutant human mesothelioma cell line with an inducible (metallothionine) wild-type P53 gene induced marked growth inhibition when gene expression was induced.

Masahiko (Japan) evaluated the expression of c-myc, H-ras, c-erb-2 in mesothelioma by immunohistochemical studies and demonstrated expression in 46%, 7% and 13% of cases respectively.

Carbone (USA) injected hamsters with SV40 and evaluated mesothelioma development. Interestingly, 50% of hamsters injected via the intracardiac routes developed mesothelial tumours, in all of which the SV40 gene was integrated and expressed. None of the hamsters injected with SV40 t-deletion mutants developed mesothelioma. Both epithelial and spindle tumours occurred in these animals (at different parts of the tumours) indicating mixed pathology. Tumours developed 3-6 months after injection. Other animals developed lymphoma. It is intriguing that this virus can induce the development of mesothelioma in-vivo (in the context of its ability to transform mesothelial cells in-vitro) and it is intriguing that an intracardiac injection of this virus will induce mesothelioma in 50% of animals.

Mossman (USA) evaluated c-fos and c-jun proto-oncogene expression in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. Asbestos induced a persistent increase in expression in these genes particularly crocidolite. The data suggests that asbestos-induced carcinogenesis may occur though chronic stimulation of cell proliferation via the early response gene pathway including c-jun and c-fos.

Broadus (USA) demonstrated production of IL-8 (a neutrophil chemotactic factor) by mesothelial cells in-vitro and in the pleural space in-vivo following installation of crocidolite in rabbits and, by antibody inhibition, demonstrated that IL-8 contributed most of the neutrophil chemotactic activity in this model.

Everitt (USA) evaluated mesothelioma induction by man-made mineral fibres following inhalation. Mesothelioma incidence was 3% in rats and 42% in hamsters, the latter possibly being due to the presence of a more reactive mesothelium.

Rodriguez-Panadero (Spain) evaluation the pleural coagulation and fibrinolytic system during talc pleurodesis and showed and increase in pleural coagulation and fibrinolysis, with a fall in
D-Dimer levels in those who achieved good results with talc poudrage.

Immunobiology
Haddada (France) described a replication-defective recombinant adenovirus harbouring the murine IL-2 gene under the control of a viral promoter and its expression in non-dividing tumour cells. These cells induce systemic anti-tumour reactivity. The in-vivo transfer of these constructs to subcutaneous tumours showed effective transfer with some effect on tumour progression and clinical trials are planned.

Robinson (Australia) summarised their group’s work evaluating the efficacy of stable transfection of allo MHC molecules (class I) into murine tumours and the capacity of this to induce a protective immune response against untransfected cells. Limited protection could be achieved using the class I allo transfectants.

Mutti (Italy) demonstrated ICAM-1 expression on reactive mesothelial cells from serous effusions. This group also demonstrated TNF-α release by a mesothelioma cell line following LPS stimulation. They suggest that this finding has implications when TNF as potential therapy is considered. It may also have implications for understanding the systemic symptoms suffered by patients with this disease.

Nakano (Japan) demonstrated elevated serum IL-6 levels in mesothelioma with some correlation between IL-6 levels and platelet counts. Immunohistochemical staining of biopsy tumour tissue was positive for IL-6. Van Hezik (The Netherlands) also found elevated IL-6 levels in mesothelioma in the serum and in the pleural fluid of patients with mesothelioma but with little correlation with blood platelet count. In contrast he found a strong correlation between soluble IL-2 receptor in the serum and platelet count.

Epidemiology
Musk (Australia) followed up the unique cohort of non-occupationally exposed residents from Wittenoom (exposed to crocidolite). From a cohort of 4,890 residents 24 have developed mesothelioma (9 males, 15 females), with time from first exposure to diagnosis ranging from 23-44 years and a period of residence (ie. exposure ranging from 6 weeks to 11 years).

McDonald (UK) summarised the mortality from mesothelioma in Quebec chrysotile miners and millers. He confirmed the higher death rate but was unable to resolve the issue yet of the attributability of contaminating fibrous tremolite.

Ekholm (Norway) described a successful co-operation between mesothelioma interests groups in Norway, Sweden and Finland, establishing standards for diagnosis, treatment and response evaluation.

Clinical/Therapy
Donna (Italy) described an anti-mesothelial antibody, reactive against normal and mesothelioma cells, generated from human antigen isolated from malignant effusions.

Galateau-Salle (France) used a variety of antibodies to evaluate immunohistochemical diagnoses of mesothelioma. They found that dual negativity to CEA and LeuM1 favoured mesothelioma and focal staining with LeuM1 favoured adenocarcinoma. However no commercially available marker differentiated atypical mesothelial
hyperplasia from early in-situ malignant epithelial mesothelioma. Similarly, no combination differentiated pachypleuritis from true malignant desmoplastic mesothelioma.

Giron (France) discussed the role of new imaging modalities in mesothelioma, particularly magnetic resonance imaging. Using CT and MRI, it is clear that metastasis occur frequently in bone, adrenal glands and kidney and particularly in mediastinal lymph nodes (40% in his series). MRI had some advantages over CT in delineating the real extent of the disease. MRI in the coronal plane also allowed better evaluation of apical disease, diaphragmatic involvement and transdiaphragmatic involvement.

Astoul and Monet (France) described the use of intrapleural recombinant IL-2 and gamma interferon therapy in mesothelioma. They have found responses in patients with early disease but little response in patients with advanced disease.

Escudier (France) evaluated CDDP and alpha interferon in advanced pleural malignant mesothelioma. They demonstrated responses 7/19 patients (6/9 evaluable epithelial subtypes), with limiting toxicities being nausea-vomiting and haematologic.

Robinson (Australia) summarised their experience with a combination of recombinant alpha 2A interferon (Roferon-A) and Adriamycin. This combination added little to their already modest but significant responses with alpha interferon alone (12-20%) but with additional toxicities induced by Adriamycin.

Rusch (USA) reported on the study of intrapleural plus systemic chemotherapy after pleurectomy/decortication in malignant pleural mesothelioma. In patients with stage I-II by CT (medical condition permitting operation and CDDP) demonstrated that this intensive regime was feasible with acceptable toxicity. Sites of relapse were mainly local.

Wang (USA) described an intriguing paraneoplastic limbic encephalitis in association mesothelioma.

Conclusion
The work presented was extremely interesting and stimulating and demonstrated that a substantial amount of work was currently underway in many different countries aimed at evaluating the way this tumour occurs and grows, the relationship between the tumour and the body’s immune system, the effect of asbestos on populations (particularly low doses) and ways in which these patients can be better diagnosed and managed. It is clear that advances in understanding of the nature and treatment of this tumour may be applicable to other solid tumours. Overall, in view of the increasing incidence of this disease and its resistance to most conventional forms of therapy, it is hoped that further workshops of this kind will stimulate international collaborative activity who will more rapidly advance our knowledge of this disease.

FORTHCOMING MEETINGS
The 7th World Conference on Lung Cancer
June 26-July1, 1994
Colorado Springs, Colorado USA
Contact: Centennial Conferences
4800 Baseline Road
Suite A-12
BOULDER CO80303 USA
HUMAN MALIGNANT MESOTHELIOMA CELL LINES DESCRIBED IN THE LITERATURE

<table>
<thead>
<tr>
<th>Author</th>
<th>Reference</th>
<th>Total number of isolated malignant mesothelioma cell lines</th>
<th>Effusion</th>
<th>Patient material biopsy or surgical specimen</th>
<th>Autopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvarez-Fernandez et al</td>
<td>13</td>
<td>2</td>
<td></td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Behebani et al</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hsu et al</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Klominek et al</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lauber et al</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manning et al</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Marklund et al</td>
<td>15</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Masuda et al</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pelin-Enlund et al</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Popescu et al</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schmitter et al</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Schoenberger et al</td>
<td>12</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Shanfang et al</td>
<td>11</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Versnel et al</td>
<td>1</td>
<td>17</td>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

abstracts from meetings not included.
References

EXECUTIVE COMMITTEE
(1993-1995)

PRESIDENT
Assoc. Professor Bruce WS Robinson
University Dept of Medicine
Queen Elizabeth III Medical Centre
Nedlands Australia 6009
Fax: 61 9 389 2816

SECRETARY
Dr Marjan Versnel
Dept of Immunology
Erasmus University
P O Box 1738
The Netherlands 3000 DR
ROTTERDAM
Fax: 31 10 436 7601

TREASURER
Dr Brenda Gerwin
Laboratory of Human Carcinogenesis
Div of Cancer Etiology
NCI, Bldg 37, Room 2C08
Bethesda MD 20892
USA
Fax: 1 301 496 0497

COMMITTEE MEMBERS
Dr Eric Batemen
Respiratory Physician
Grootescuur Hospital
University of Capetown
Observatory
Capetown 7925
SOUTH AFRICA
Fax: 27 21 47 4955
Tel: 27 21 404 4360

Dr Carl Barrett
Laboratory of Molecular Carcinogenesis
NIEHS PO Box 12233
Research Triangle Park
NC 27709
USA
Fax: 1 919 541 7784

Dr Jean Bignon
Centre Hospitalier Intercommunal
40 Avenue de Verdun
94010 Creteil CEDEX
FRANCE
Fax: 33 48 997 068

Dr Patrick Brochard
Centre Hospitalier Intercommunal
40 Avenue de Verdun
94010 Creteil CEDEX
FRANCE

Dr Philippe Chahinian
Dept Neoplastic Diseases
Mount Sinai Medical Centre
1 Crusfave L Levy Place
New York NY 10029
USA
Fax: 1 212 860 7186

Dr Adalberto Donna
USSL 70 Serv de Anatomia de
Istol Pathologie
Via Venezia No 18 15100
Alessandria
ITALY
Fax: 39 131 236433

Dr Per-Frederik Ekholdt
Dept of Internal Medicine
Oestfold Country Hospital
1603 Fredrikstad
NORWAY

Dr Marie-Claude Jaurand
Cell and Molecular Toxicology
INSERM U139 CHU Henri Mondor
94010 Creteil CEDEX France
Fax: 33 1 49 81 35 33

Dr Sakari Knuttila
Department of Medical Genetics
University of Helsinki
Haartmanin leatu 3, 00290 Helsinki
FINLAND
Fax: 358 0434 6677
Dr John Lechner
International Toxicology Res. Institute
Lovelace Foundation
PO Box 5890
Albuquerque NM 87185-5890
USA
Fax: 1 505 844 6836

Dr Takashi Nakano
3rd Dept of Internal Medicine
Hyogo College of Medicine
1-1 Mukogawa-cho
Nishinomiya
Hyogo 663
JAPAN
Fax: 81 798 45 6474

International Mesothelioma Interest Group
IMIG Registration Form

NAME, Title__
Address__
__

Research area
 Epidemiology □ Pathology □ Cytogenetics □
 Cell Biology □ Immunology □ Molecular Biology □
 Clinical □ Other (indicate) □

Phone number __
Facsimile number __

Send to the Secretary: Dr M Versnel, Department of Immunology
 Erasmus University, PO Box 1738
 3000 DR Rotterdam, THE NETHERLANDS

Mesothelioma Monoclonal Antibodies
The following individuals should be contacted directly re the availability of their antibodies:
Dr A Donna (for address see the list of committee members)
Dr R Stahel: Division of Oncology, University Hospital, CH-8091, Zurich, Switzerland.

National Mesothelioma Interest Groups
Co-operative research and clinical trials groups have been established in Norway, Sweden and Finland (for details contact Dr P F Eckholdt) and Australia (contact A.Prof. B Robinson); see committee list for addresses of both of these individuals.